viernes, 20 de abril de 2012

ACCIDENTE NUCLEAR DE CHERNOBYL

El accidente nuclear de Chernobyl (Ucrania) ocurrió durante la noche del 25 al 26 de abril de 1986 en el cuarto reactor de la planta.
El 25 de abril, a la una de la madrugada, los ingenieros iniciaron la entrada de las barras de regulación en el núcleo del reactor, refrigerado por agua y moderado por grafito (que pertenece al tipo que los soviéticos llaman RMBK-1000), para llevar a cabo una prueba planeada con anterioridad, bajo la dirección de las oficinas centrales de Moscú. La potencia térmica en este caso desciende normalmente de 3.200 a 1.600 MW.
Accidente nuclear Chernobyl
Hacia las 23 horas se habían ajustado los monitores a los niveles más bajos de potencia. Pero el operador se olvidó de reprogramar el ordenador para que se mantuviera la potencia entre 700 MW y 1.000 MW térmicos. Por este motivo, la potencia descendió al nivel, muy peligroso, de 30 MW.
La mayoría de las barras de control fueron extraídas con el fin de aumentar de nuevo la potencia. Sin embargo, en las barras ya se había formado un producto de desintegración, el xenón, que “envenenó” la reacción. En contra de lo que prescriben las normas de seguridad, en una medida irreflexiva, se extrajeron todas las barras de control.
El día 26 de abril, a la una y tres minutos, esta combinación poco usual de baja potencia y flujo de neutrones intenso, provocó la intervención manual del operador, desconectando las señales de alarma. A la una y 22 minutos, el ordenador indicó un exceso de radiactividad, pero los operadores decidieron finalizar el experimento, desconectando la última señal de alarma en el instante en el que el dispositivo de seguridad se disponía a desconectar el reactor.
Dado que los sistemas de seguridad de la planta quedaron inutilizados y se habían extraído todas las barras de control, el reactor de la central quedó en condiciones de operación inestable y extremadamente insegura. En ese momento, tuvo lugar un transitorio que ocasionó un brusco incremento de potencia. El combustible nuclear se desintegró y salió de las vainas, entrando en contacto con el agua empleada para refrigerar el núcleo del reactor. A la una y 23 minutos, se produjo una gran explosión, y unos segundos más tarde, una segunda explosión hizo volar por los aires la losa del reactor y las paredes de hormigón de la sala del reactor, lanzando fragmentos de grafito y combustible nuclear fuera de la central, ascendiendo el polvo radiactivo por la atmósfera.
Se estima que la cantidad de material radiactivo liberado fue 200 veces superior al de las explosiones de Hiroshima y Nagasaki.
El accidente nuclear fue clasificado como nivel 7 (“accidente nuclear grave”) en la Escala Internacional de Sucesos Nucleares (Escala INES) del OIEA, es decir, el accidente de peores consecuencias ambientales, y que sirve como referencia para proyectar y controlar los dispositivos y sistemas de protección de las instalaciones nucleares.
Aunque el accidente tuvo lugar por un claro error humano, hay que tener en cuenta los factores sociales y políticos de la Unión Soviética en aquel momento. La falta de una estructura social democrática implicaba una ausencia de control de la sociedad sobre la operación de las centrales nucleares y de una “cultura de seguridad”. Posiblemente, el temor de los operadores a no cumplir las instrucciones recibidas desde Moscú, les llevó a desmontar los sistemas de seguridad esenciales para el control del reactor.
Tampoco existía ningún Órgano Regulador de la Seguridad Nuclear que llevase a cabo con autoridad propia e independencia la inspección y evaluación de la seguridad de las instalaciones nucleares.
En cuanto a los aspectos técnicos de seguridad del reactor, hay que tener en cuenta que en los reactores RMBK no existe ningún sistema de confinamiento que cubra el circuito primario y tampoco hay edificio de contención capaz de retener los productos de fisión en caso de accidente, como ocurre en los reactores occidentales.

Consecuencias del accidente nuclear de Chernobyl

El comienzo de un incendio, que no se consiguió apagar hasta el 9 de mayo, aumentó los efectos de dispersión de los productos radiactivos, y la energía calorífica acumulada por el grafito dio mayor magnitud al incendio y a la dispersión atmosférica.
De los productos radiactivos liberados eran especialmente peligrosos el yodo-131 (cuyo período de semidesintegración es de 8,04 días) y el cesio-137 (con un período de semidesintegración de unos 30 años), de los cuales, aproximadamente la mitad, salieron de la cantidad contenida en el reactor. Además, se estimó que todo el gas xenón fue expulsado al exterior del reactor. Estos productos se depositaron de forma desigual, dependiendo de su volatilidad y de las lluvias durante esos días.
Los más pesados se encontraron en un radio de 110 km, y los más volátiles alcanzaron grandes distancias. Así, además del impacto inmediato en Ucrania y Bielorrusia, la contaminación radiactiva alcanzó zonas de la parte europea de la antigua Unión Soviética, y de Estados Unidos y Japón. En España, el Consejo de Seguridad Nuclear (CSN) detectó pequeñas cantidades de yodo-131 y cesio-137, por debajo de los límites aceptables de dosis de radiación, en las regiones mediterráneas y en Baleares.
Para determinar los efectos de la radiación sobre la salud de las personas, la Organización Mundial de la Salud desarrolló el IPHECA (Programa Internacional sobre los Efectos en la Salud del Accidente de Chernobyl), de modo que pudieran investigarse las posibles consecuencias sanitarias del accidente. Estas consecuencias incluían efectos relacionados con la ansiedad producida en los habitantes de las zonas más contaminadas como resultado de la evacuación de sus casas, y del miedo a posibles daños futuros en la salud por los efectos biológicos de la radiación. Además, el programa proporcionaba asistencia técnica al sistema sanitario nacional de Bielorrusia, a la Federación Rusa y a Ucrania, para aliviar las consecuencias sanitarias del accidente de Chernobyl.
Los resultados obtenidos con los proyectos piloto IPHECA han mejorado considerablemente el conocimiento científico de los efectos de un accidente radiactivo en la salud humana, para que puedan sentarse las bases de las guías de planificación y del desarrollo de futuras investigaciones.
Las consecuencias inmediatas del accidente sobre la salud de las personas fueron las siguientes:
  • 237 personas mostraron síntomas del Síndrome de Irradiación Aguda (SIA), confirmándose el diagnóstico en 134 casos. 31 personas fallecieron durante el accidente, de las cuales, 28 (bomberos y operarios) fueron víctimas de la elevada dosis de radiactividad, y 3 por otras causas. Después de esta fase aguda, 14 personas más han fallecido en los diez años posteriores al accidente.
  • Entre 600.000 y 800.000 personas (trabajadores especializados, voluntarios, bomberos, militares y otros) llamadas liquidadores, encargadas de las tareas de control y limpieza, fallecidas en distintos períodos.
  • 16.000 habitantes de la zona fueron evacuados varios días después del accidente, como medida de protección frente a los altos niveles de radiación, estableciéndose una zona de exclusión en los territorios más contaminados, en un radio de 30 km alrededor de la instalación.
  • 565 casos1 de cáncer de tiroides en niños fundamentalmente (de edades comprendidas entre 0 y 14 años) y en algunos adultos, que vivían en las zonas más contaminadas (208 en Ucrania, 333 en Bielorrusia y 24 en la Federación Rusa), de los cuales, 10 casos han resultado mortales debido a la radiación.
  • Otros tipos de cáncer, en particular leucemia, no han registrado desviaciones estadísticamente significativas respecto a la incidencia esperada en condiciones normales.
  • Efectos psicosociales producidos por causas no relacionadas con la radiación, debidos a la falta de información, a la evacuación de los afectados y al miedo de los efectos biológicos de la radiación a largo plazo. Estos efectos fueron consecuencia de la reacción de sorpresa de las autoridades nacionales ante el accidente, en cuanto a la extensión, duración y contaminación a largas distancias. Como los procedimientos de emergencia eran inexistentes, había poca información disponible, haciéndose notar la desconfianza y la presión pública para que se tomaran medidas, pero las decisiones oficiales no tuvieron en cuenta los efectos psicológicos de la población, llevándose a cabo interpretaciones erróneas de las recomendaciones de la International Commission On Radiological Protection (ICRP) para los niveles de intervención de los alimentos.Todo esto se vio traducido en un importante número de alteraciones para la salud, como ansiedad, depresiones y varios efectos psicosomáticos. La Organización Mundial de la Salud (OMS) compró equipos y suministros médicos para los 3 países (Bielorrusia, Federación Rusa y Ucrania) por valor de cerca de 16 millones de dólares. El resto de los gastos de los proyectos piloto se dedicó a ayudas a los programas, reuniones científicas, cursos de entrenamiento en instituciones extranjeras de investigación y en instituciones clínicas para 200 especialistas, y a proporcionar capital para continuar con las actividades del programa IPHECA. 
Según la Agencia de Energía Atómica (NEA) de la OECD, los rangos de dosis de radiación, recibidos por los distintos grupos, fueron los siguientes:
  • Liquidadores: del total de los liquidadores, unos 200.000 recibieron dosis variables desde 15 a 170 milisievert (mSv)3.
  • Evacuados: las 116.000 personas evacuadas, la mayor parte de un radio de acción de la central de 30 km, recibieron dosis altas (el 10% más de 50 mSv y el 5% más de 100 mSv), especialmente en el tiroides por incorporación de yodo-131. La zona más evacuada fue Prypiat, a 2 km escasos de la central, convirtiéndose en una “ciudad fantasma” al abandonar la ciudad las 60.000 personas que vivían allí.
  • Habitantes de las áreas contaminadas: alrededor de 270.000 personas continuaron viviendo en áreas contaminadas, de modo que los niños recibieron altas dosis en tiroides, debido a la ingestión de leche contaminada con yodo-131 durante las primeras semanas después del accidente. Tras el control de los alimentos, durante el período 1986-1989, el rango de dosis de cesio-137 en el suelo fue de 5 a 250 mSv/año, con una media de 40 mSv/año.
  • Resto de la población: los materiales radiactivos volátiles se extendieron por todo el Hemisferio Norte, aunque las dosis recibidas por la población fueron muy bajas y carecen de importancia desde el punto de vista de la protección radiológica. Las dosis de radiación, durante el primer año, oscilaron en Europa entre 0,005 y 0,5 mSv, en Asia entre 0,005 y 0,1 mSv, y en el Norte de América fueron del orden de 0,001 mSv. 
Situación actual y perspectivas de futuro de Chernobyl

Durante los siete meses siguientes al accidente, los restos del reactor nuclear 4 accidentado fueron enterrados por los liquidadores, mediante la construcción de un “sarcófago” de 300.000 toneladas de hormigón y estructuras metálicas de plomo para evitar la dispersión de los productos de fisión. En principio, este sarcófago fue una solución provisional y debía estar bajo estricto control dada su inestabilidad a largo plazo, ya que podía producirse un hundimiento.  La recuperación de la zona del accidente y de los productos de limpieza han dado lugar a una gran cantidad de residuos radiactivos y equipos contaminados, almacenados en cerca de 800 sitios distintos dentro y fuera de la zona de exclusión de 30 km alrededor del reactor.
 Estos residuos se encuentran parcialmente almacenados en contenedores o enterrados en trincheras, pudiendo provocar riesgo de contaminación de las aguas subterráneas.
 Se ha evaluado que el sarcófago y la proliferación de los sitios de almacenamiento de residuos representan una fuente de radiactividad peligrosa en las áreas cercanas, y algunos expertos de la NEA temían que el hundimiento del reactor accidentado ocasionara graves daños en el único reactor en funcionamiento hasta el 15 de diciembre de 2000, el reactor 3.
Estado actual en Chernobyl después del accienteEn la Conferencia Internacional de Viena, celebrada en abril de 1996, se concluyó que la rehabilitación total de la zona no era posible debido a la existencia de “puntos calientes” de contaminación, de riesgos de contaminación de aguas subterráneas, de restricciones en los alimentos y de riesgos asociados al posible colapso del sarcófago, dado su deterioro en los años siguientes al accidente. Se apuntó que era necesario llevar a cabo un completo programa de investigación para desarrollar un diseño adecuado que constituyera un sistema de confinamiento seguro desde el punto de vista ecológico, evitando las filtraciones de agua de lluvia en su interior y evitando el hundimiento del sarcófago existente, lo que provocaría el escape de polvo radiactivo y de los restos de combustible al medio ambiente.
 Ante esta situación, las autoridades y la industria nuclear de los países occidentales están realizando esfuerzos notables para ayudar a los países del Este a mejorar la seguridad de sus reactores, incluyendo los RMBK, y se puede decir que en la actualidad, la situación de estos países es mucho mejor que en el año 1986.
 Entre los programas de ayuda de la Unión Europea destacan los programas TACIS (1989) y PHARE (1990). Todas las contribuciones económicas se transfieren a un fondo gestionado por el BERD (Banco Europeo de Reconstrucción y Desarrollo) conocido como “Chernobyl Shelter Fund (CSF)” o “Fondo de Protección de Chernobyl”. El BERD administrará el fondo en nombre de los países contribuyentes y donantes, siendo responsable ante la Asamblea que se reúne 3 ó 4 veces al año. En la actualidad, cuenta con 22 miembros, entre ellos la Unión Europea y Ucrania.
Estado actual en Chernobyl después del accienteEl Programa TACIS financió, en 1996, un primer estudio con el objetivo de analizar, en una primera fase, las posibles medidas a corto y largo plazo, para remediar la deplorable situación del sarcófago, y transformarlo finalmente en un emplazamiento seguro.
 En un principio, había dos alternativas: enterrar el sarcófago en un bloque de hormigón y construir un nuevo recinto que cubriera completamente el reactor 4 accidentado y el reactor 3.
 En mayo de 1997, un grupo de expertos europeos, americanos y japoneses, financiados por el programa, prepararon el SIP (Shelter Implementation Plan-Plan de Ejecución del Sistema de Protección). Los objetivos del plan para convertir el sarcófago en un emplazamiento seguro fueron los siguientes:
  • Reducir el riesgo de hundimiento del sarcófago.
  • En caso de hundimiento, limitar las consecuencias.
  • Mejorar la seguridad nuclear del sarcófago.
  • Mejorar la seguridad de los trabajadores y la protección ambiental en el sarcófago.
  • Convertir el emplazamiento del sarcófago en una zona segura desde el punto de vista medioambiental.
 Además, el SIP estableció tres hitos a conseguir:
  • Decisión estratégica a seguir en cuanto a la estabilidad y la protección.
  • Estrategia a seguir en cuanto al problema del combustible dañado y esparcido por el interior del sarcófago.
  • Decisión del nuevo tipo de recinto a construir.
 De acuerdo con el programa, el proyecto debe estar finalizado en 2007. Hasta mayo de 2001, se llevaron a cabo las tareas de estabilización y otras medidas a corto plazo, constituyendo la primera fase del SIP. También se realizaron los estudios técnicos preliminares necesarios para determinar una estrategia de mejora de los sistemas de seguridad y preparar, en una segunda fase, el sarcófago como emplazamiento seguro.
Estado actual en Chernobyl después del accienteEn cuanto al tipo de recinto de protección, se decidió finalmente construir un amplio arco de bóveda metálico en cuyo interior quedaría la unidad 4 dañada, ya que ofrecía muchas ventajas en cuanto a la reducción de las dosis de irradiación, la seguridad durante la construcción, la liberación de las actuales estructuras inestables, un mayor espacio para el desmantelamiento y la flexibilidad necesaria para hacer frente a las incertidumbres de retirada del combustible dañado y disperso.
Este arco abovedado metálico, en construcción desde 2002 y hasta 2005, con un coste de 700 millones de dólares, albergará las unidades 3 y 4 de la central de Chernobyl, bajo su muro impermeable de doble pared presurizada internamente y con una cimentación de 27 metros de profundidad.
La unidad 3 de la central de Chernobyl, se paró definitivamente el 15 de diciembre de 2000. Tanto los expertos ucranianos como los extranjeros, fijaron el coste del cierre entre 2.000 y 5.000 millones de dólares, hasta retirar el combustible radiactivo que quede en la central con fecha límite en 2008. Esta decisión completó el cierre total de la instalación nuclear que había dado lugar, el 26 de abril de 1986, a la mayor catástrofe nuclear de la Historia.
Anteriormente, el reactor 1 se había cerrado el 31 de noviembre de 1996, tras graves deficiencias de la refrigeración que dieron lugar a un nivel 3 en la Escala INES, y el reactor 2, que se había cerrado en octubre de 1991 tras un incendio. El reactor 3 cerrado el 15 de diciembre de 2000, había tenido ya varios incendios y la estructura estaba afectada por la corrosión.

VENTAJAS E INCONVENIENTES DE LA ENERGÍA NUCLEAR

Analizar las ventajas e inconvenientes de la energía nuclear es un ejercicio difícil pero necesario para formarse una opinión sobre la conveniencia o no de apostar por este tipo de energía.
En la mayoría de páginas en que se trata la energía nuclear se parte de una idea subjetiva sobre los pros y contra del aprovechamiento de la energía nuclear. En esta web procuramos presentar el máximo de información relacionada con la energía nuclear sin tomar partido para que el visitante pueda crearse sus propias conclusiones.
Sin embargo, en este apartado, hacemos un análisis resumido sobre las principales ventajas e inconvenientes que objetivamente los autores de esta web vemos sobre la energía nuclear.

Ventajas de la energía nuclear

Un tercio de la energía generada en Europa proviene de la energía nuclear, esto supone que se emiten 700 millones de toneladas de CO2 y otros contaminantes generados a partir de la quema de combustibles fósiles.
Actualmente se consumen más combustibles fósiles de los que se producen de modo que en un futuro no muy lejano se agotarían estos recursos. Una de las grandes ventajas del uso de la energía nuclear es la relación entre la cantidad de combustible utilizado y la energía obtenida. Esto se traduce, también, en un ahorro en transportes, residuos, etc.
Al ser una alternativa a los combustibles fósiles como el carbón o el petróleo, evitaríamos el problema del llamado calentamiento global, el cual, se cree que tiene una influencia más que importante con el cambio climático del planeta. Mejoraría la calidad del aire que respiramos con lo que ello implicaría en el descenso de enfermedades y calidad de vida.
Sobre éste último punto conviene destacar que lo que realmente tiene una influencia importante con el calentamiento global son las emisiones provocadas por el transporte por carretera y que las que generan la generación de energía por combustibles fósiles son relativamente muy pocas. Aún así, una de las aplicaciones de la energía nuclear (aunque muy poco utilizada) es convertirla en energía mecánica para el transporte.
Actualmente la generación de energía eléctrica se realiza mediante reacciones de fisión nuclear, pero si la fusión nuclear fuera practicable, ofrecería las siguientes ventajas:
  • Obtendríamos una fuente de combustible inagotable.
  • Evitaríamos accidentes en el reactor por las reacciones en cadena que se producen en las fisiones.
  • Los residuos generados son mucho menos radiactivos.

Inconvenientes de la energía nuclear

El principal inconveniente y lo que la hace más peligrosa es que seguridad en su uso recae sobre la responsabilidad de las personas. Decisiones irresponsables pueden provocar accidentes en las centrales nucleares pero, aún mucho peor, se puede utilizar con fines militares como se demuestra en la historia de la energía nuclear en que la primera vez que se utilizó la energía nuclear tras las oportunas investigaciones fue para atacar Japón en la Segunda Guerra Mundial con dos bombas nucleares.
A nivel civil, uno de los principales inconvenientes es la generación de residuos nucleares y la dificultad para gestionarlos ya que tardan muchísimos años en perder su radiactividad y peligrosidad.
Apenas incide favorablemente en el cambio climático porqué la principal fuente de emisiones es el transporte por carretera.
En los principales países de producción de energía nuclear para mantener constante el número de reactores operativos deberían construirse 80 nuevos reactores en los próximos diez años.
Si bien económicamente es rentable desde el punto de vista del combustible consumido respecto a la energía obtenida no lo és tanto si se analizan los costes de la construcción y puesta en marcha de una planta nuclear teniendo en cuenta que, por ejemplo en España, la vida útil de las plantas nucleares és de 40 años.
Inconvenientes de seguridad incrementados ahora con el terrorismo internacional. Además de la proliferación de energía nuclear que obligaría a recurrir al plutonio como combustible.
Aunque los sistemas de seguridad son muy avanzados, las reacciones nucleares por fisión generan unas reacciones en cadena que si los sistemas de control fallasen provocarían una explosión radiactiva.
Por otra parte, la energía nuclear de fusión es inviable debido a la dificultad para calentar el gas a temperaturas tan altas y para mantener un número suficiente de núcleos durante un tiempo suficiente para obtener una energía liberada superior a la necesaria para calentar y retener el gas resulta altamente costoso.

ESCALA INES (INTERNACIONAL DE SUCESOS NUCLEARES Y RADIOLÓGICOS)

La escala INES es un instrumento que se utiliza en todo el mundo para comunicar al público información sistemática acerca de la importancia de los sucesos nucleares y radiológicos desde el punto de vista de la seguridad.
Así como sin las escalas Richter o Celsius no sería fácil entender la información sobre los terremotos o la temperatura, la escala INES indica la importancia de los sucesos derivados de una amplia gama de actividades, que abarcan el uso industrial y médico de fuentes de radiación, la explotación de instalaciones de energía nuclear y el transporte de materiales radiactivos.
Con arreglo a esta escala INES, los sucesos se clasifican en siete niveles. Los sucesos de los niveles 1 a 3 se denominan "incidentes", mientras que en el caso de los niveles 4 a 7 se habla de "accidentes". Cada ascenso de nivel en la escala indica que la gravedad de los sucesos es, aproximadamente, diez veces superior. Cuando los sucesos no revisten importancia desde el punto de vista de la seguridad se los denomina "desviaciones" y se clasifican "Debajo de la escala / Nivel 0".

ACCIDENTES NUCLEARES

En la energía nuclear nos referimos a accidente nuclear a aquellos sucesos que emiten un determinado nivel de radiación susceptibles de perjudicar a la salud pública.
Los accidentes nucleares se clasifican entre accidentes e incidentes nucleares según la gravedad. Y se incluyen tanto los accidentes nucleares como los accidentes radiactivos. para entendernos, un accidente nuclear podría ser la avería en un reactor de una central nuclear y un accidente por radiación podría ser el vertido de una fuente de radiación a un río.
A pesar de los accidentes nucleares más conocidos se han producido en centrales nucleares también pueden suceder en otros centros en los que se trabaje con energía nuclear, como hospitales o laboratorios de investigación.
Para determinar la gravedad de un accidente se ha definido una Escala Internacional de Accidentes Nucleares (más conocida por sus siglas en inglès INES).
Debido el secretismo de los gobiernos y las empresas propietarias de las centrales nucleares es difícil determinar la gravedad o la extensión y repercusiones que un determinado accidente nuclear puede suponer.

Accidentes nucleares civiles

En los años 1950 se produjeron tres accidentes nucleares destacables:
  • 12 de diciembre de 1952 en Canadá se produce el primer accidente nuclear serio, en el reactor nuclear NRX de Chalk River.
  • También en Canadá y en la misma central nuclear de Chalk Rriver , 24 de mayo de 1958: en el reactor NRU una varilla de combustible de uranio se incendió y se partió en dos al intentar retirarla del núcleo del reactor.
  • Estados Unidos, 1959: un reactor refrigerado por sodio sufrió una fusión parcial del núcleo en el Laboratorio de Santa Susana Field, cerca de Simi Valley, California.
En marzo de 1979 la central nuclear de Three Mile Island tuvo un grave accidente nuclear después del primer año de funcionamiento. La mala interpretación de los datos provocó errores muy graves en determinadas decisiones del personal de la central. Aunque el núcleo del reactor nuclear quedó fuertemente dañado tuvo un escape limitado de productos radiactivos al exterior. El accidente fue clasificado como nivel 5 en la Escala Internacional de Sucesos Nucleares (INES).


La central de Three Mile Island tuvo un escape de productos radiactivos.


En abril de 1986, ocurrió el accidente nuclear más importante de la história en la central nuclear de Chernobyl por un sucessión de errores humanos en el transcuros de unas pruebas plantificadas con anterioridad. Fue clasificado como nivel 7 (“accidente nuclear grave”) en la Escala INES.

Central Nuclear de Chernobyl


En octubre de 1989, tuvo lugar el incidente de la central nuclear de Vandellós I. Un incendio en el generador eléctrico provocó un fallo mecánico, que dio lugar a una inundación de agua de mar de la cava del reactor y la inoperabilidad de algunos de los sistemas de seguridad. El incidente fue clasificado como nivel 3 (“incidente importante”) en la Escala INES, ya que no se produjo escape de productos radiactivos al exterior, ni fue dañado el núcleo del reactor y tampoco hubo contaminación dentro del emplazamiento.
El accidente nuclear de la central nuclear de Vandellós I provocó el desmantelamiento de la intalación nuclear.


En septiembre de 1999, ocurrió el accidente nuclear de la planta de tratamiento de combustible de uranio de Tokaimura, propiedad de la compañía JCO en Tokaimura. Todos los indicios apuntaron a que fue debido a un fallo humano. El accidente se clasificó como nivel 4 según la Escala INES (“accidente sin riesgo significativo fuera del emplazamiento”), ya que las cantidades de radiación liberadas al exterior fueron muy pequeñas, y dentro de los límites establecidos, pero dentro del emplazamiento, los daños producidos en los equipos y barreras biológicas fueron significativos, además de la fatal exposición de los trabajadores.

viernes, 24 de febrero de 2012

Aplicaciones médicas de la energía nuclear

Las aplicaciones de los radionucleidos relacionadas con la salud humana surgieron con rapidez después del descubrimiento de los rayos X. En la actualidad, la mayor parte de los hospitales y centros sanitarios disponen de un Departamento de Radiología y de un Departamento de Medicina Nuclear, y emplean métodos radioquímicos de laboratorio para diagnóstico e investigación de una gran variedad de enfermedades.

Medicina Nuclear

En medicina nuclear, un determinado radionucleido es administrado al paciente, con el objetivo de investigar un fenómeno fisiológico específico por medio de un detector especial, generalmente una cámara gamma, ubicada fuera del cuerpo. El radionucleido inyectado se deposita selectivamente en ciertos órganos (tiroides, riñón, etc.) pudiendo verse desde la cámara gamma el tamaño, la forma y el funcionamiento de dichos órganos. La mayoría de estos procedimientos son de diagnóstico, aunque en algunos casos se administran radionucleidos con fines terapéuticos. Los radionucleidos útiles en medicina nuclear son los siguientes:
  • Diagnóstico “in vivo”: emisores gamma de vida media corta (tecnecio-99 metaestable, indio-111, yodo-131, xenon-133 y talio-201) y emisores de positrones de vida media ultracorta (carbono-11, oxígeno-15. flúor-18 y rubidio-82).
  • Diagnóstico “in vitro”: emisores gamma (yodo-125, cromo-51 y cobalto-57) y emisores beta (tritio y sodio-24).
  • Terapia: emisores beta (yodo-131, ytrio-90 y estrocio-90).
Medicina nuclear in vivo: Uso de radiofármacos

Los radiofármacos son sustancias susceptibles de ser administradas al organismo vivo con fines diagnósticos o terapéuticos, investigando el funcionamiento de un órgano. En la actualidad, se utilizan con fines diagnósticos de 100 a 300 radiofármacos.
Los isótopos utilizados tienen una vida media corta de minutos, horas o días y se preparan en laboratorios de radiofarmacia garantizando así sus propiedades y su pureza.
Suelen administrarse formando parte de moléculas sencillas o unidos a moléculas más complejas para ser distribuidos en los órganos que se quieren explorar.
Los radionucleidos emisores de positrones se utilizan en la técnica denominada tomografía de emisión de positrones (PET). Los positrones emitidos por estos radionucleidos se aniquilan con los electrones atómicos, dando lugar a dos rayos gamma que se propagan en direcciones opuestas y son detectados con una gammacámara que tiene detectores ubicados a ambos lados del paciente. Este método se emplea para evaluar, entre otros, el funcionamiento del corazón y del cerebro.
La calidad de las imágenes obtenidas con estos equipos es superior a la de los equipos convencionales, pero actualmente, debido a su alto coste y alta tecnología, ya que para producir estos isótopos hay que disponer de un ciclotrón, sólo existen equipos comercializados en países con alto nivel de tecnología médica. España dispone de varios equipos de estas características en sus unidades de oncología, cardiología y neurología.
Otra técnica importante es la gammagrafía, que detecta la radiación gamma emitida por el radiofármaco fijado al órgano que se desea estudiar, en un equipo denominado gammacámara, cuyo detector se sitúa sobre el órgano, recibiendo los fotones procedentes del radiofármaco.
Estas señales se transforman en impulsos eléctricos que serán amplificados y procesados por medio de un ordenador, lo que permite la representación espacial sobre una pantalla o placa de rayos X, sobre papel o la visualización de imágenes sucesivas del órgano para su posterior estudio.
En la actualidad, las gammacámaras permiten obtener cortes tridimensionales del órgano, mejorando la calidad de los estudios y la sensibilidad diagnóstica.
La gammagrafía tiroidea consiste en la obtención de la imagen de la glándula tiroides, administrando al paciente un isótopo, como puede ser yodo-131 y tecnecio-99, que se fija en las células de esta glándula. Se emplea para diagnosticar la presencia de alteraciones de la forma, volumen o función tiroidea, como bocios, hipertiroidismo, cánceres de tiroides, etc.
La gammagrafía suprarrenal permite obtener información sobre la forma y la función de las glándulas suprarrenales, cuyas disfunciones pueden provocar la aparición de enfermedades como la Enfermedad de Addison, el Síndrome de Cushing, etc.
Con diferentes isótopos y formas de administración pueden estudiarse enfermedades cardiovasculares (anginas de pecho e infartos de miocardio), digestivas (desde quistes o tumores a trastornos digestivos o de absorción intestinal) y pulmonares (afectación tumorosa de los pulmones).
La gammagrafía ósea permite diagnosticar infecciones y tumores en los huesos, mediante la detección de la acumulación del radiofármaco inyectado al paciente en las zonas afectadas.
Los estudios del sistema nervioso central (SNC) con estas técnicas de gammagrafía son de gran utilidad para evaluar los diversos tipos de demencias, epilepsias y enfermedades vasculares o tumorales, que no pueden detectarse por resonancia magnética nuclear o por tomografía axial computerizada (TAC).

Medicina nuclear in vitro 

La técnica analítica denominada radioinmunoanálisis, permite detectar y cuantificar las sustancias existentes en sangre y orina, y que son difíciles de detectar por técnicas convencionales. Se realiza a través de la combinación de la unión anticuerpo-antígeno con el marcado con un isótopo, generalmente yodo-125, de uno de estos dos componentes, habitualmente el antígeno.
Para realizar este tipo de análisis, el paciente no entra en contacto con la radiactividad, ya que los análisis se efectúan en la sangre extraída del paciente.
Es una técnica de gran sensibilidad, especificidad y exactitud, que se aplica a diversos campos:
  • Endocrinología: determinaciones de hormonas tiroideas, suprarrenales, gonadales y pancreáticas con test dinámicos de estímulo y frenado.
  • Hematología: determinaciones de vitamina B12, ácido fólico, etc.
  • Oncología: determinaciones de marcadores tumorales para el diagnóstico y seguimiento de tumores.
  • Virología: determinaciones de marcadores de hepatitis B y C.
  • Farmacología y toxicología: determinaciones de fármacos en sangre, detectando posibles sensibilizaciones del organismos ante las alergias.
Medicina nuclear terapéutica 

La especialidad de medicina nuclear que emplea radiaciones ionizantes para el tratamiento de tumores malignos se conoce como radioterapia.
Cuando se emplean fuentes radiactivas no encapsuladas se habla de la radioterapia metabólica, que consiste en inyectar o hacer ingerir una dosis relativamente grande de una sustancia radiactiva en forma líquida, para que se acumule en el órgano que se quiere tratar, donde actúa por medio de la radiación emitida sobre los tejidos en contacto con ella, produciendo los efectos deseados de destrucción de las células tumorales.
Este tipo de terapia se emplea para el tratamiento de hipertiroidismo, cáncer de tiroides, metástasis óseas de tumores de próstatas y mama, pudiendo utilizarse sola o asociada a otros medios terapéuticos como la cirugía o la quimioterapia.
En el caso del cáncer de tiroides se emplea yodo-131, que por ser emisor gamma, se ingresa al paciente en unidades especiales que disponen de unidades de radioprotección y atención de personal médico especializado. Una vez que el paciente ha sido dado de alta, se efectúa de manera periódica un control dosimétrico para vigilar y verificar que, por sus bajas dosis de radiación gamma, el paciente puede convivir con su familia y el resto de la población.
Entre las aplicaciones de la radioterapia pueden citarse las siguientes:
  • Teleterapia: es una técnica en la que la fuente radiactiva no está en contacto directo con el tumor objeto del tratamiento. Entre las fuentes emisoras gamma utilizadas, destaca la fuente encapsulada de cobalto-60, contenida en la denominada bomba de cobalto, que impide la salida de la radiación excepto por un orificio que proporciona una radiación dirigida. Produce radiación de alta energía (1,2 MeV) capaz de irradiar grandes tumores de localización profunda. La teleterapia también puede administrarse con fuentes emisoras de haces electrónicos y neutrónicos.
  • Braquiterapia: es una técnica en la que la fuente radiactiva se encuentra en contacto directo con el tumor. Cuando las placas de material radiactivo se colocan sobre la zona tumoral se denomina braquiterapia superficial, si se introduce esta fuente temporalmente en el paciente, en cavidades naturales, se habla de braquiterapia intracavitaria y suelen emplearse fuentes encapsuladas de cesio-137, y si se colocan las fuentes radiactivas en determinados tejidos se conoce como braquiterapia intersticial. Uno de los problemas de esta terapia, también conocida como Curieterapia, es la posible exposición innecesaria del paciente y del personal sanitario a la radiación de las fuentes, por lo cual, se colocará la fuente en la posición correcta en el paciente, y el personal sanitario empleará mandos de control a distancia para preparar, transportar y manipular las fuentes radiactivas.
Radiodiagnóstico
Las técnicas de radiodiagnóstico consisten en la obtención de imágenes del organismo por medio de equipos de rayos X, que atraviesan el campo exploratorio que se desea estudiar. En la actualidad, son numerosos los avances realizados en este campo destacando las técnicas de ecografía, que emplean ultrasonidos, o la resonancia magnética nuclear que no emplea radiaciones ionizantes.
Gracias a la radiología X, pueden realizarse estudios de esqueleto, tórax, abdomen, sistema nervioso, tubo digestivo, aparato urinario, corazón, etc. La imagen radiológica se consigue al atravesar el haz de rayos X la zona a explorar y ser absorbidos los rayos X de manera distinta según los tejidos, obteniéndose un haz emergente que presenta variaciones de intensidad, visibles en una pantalla, que al revelarse da lugar a una radiografía.
Utilización de la energía nuclear en la mediciona para realizar radiodiagnóstico
Otra técnica de radiodiagnóstico importante es la tomografía axial computerizada (TAC), que consiste en obtener en un ordenador la proyección tridimensional a partir de los cortes superpuestos del órgano a estudiar, producida por un fino haz de rayos X colimados que giran alrededor del mismo.
La mamografía, es la técnica radiológica empleada para la exploración de las mamas, permitiendo estudiar los tejidos blandos con mucho contraste y diagnosticar las lesiones mamarias benignas o malignas, incluso de pequeñas dimensiones.
La radiología dental, emplea equipos especiales como películas intraorales o pantomografías (radiografías panorámicas de la boca) que permiten mejorar el diagnóstico del estomatólogo.

viernes, 20 de enero de 2012

Energia nuclear en la industria

El uso de la energía nuclear en la industria moderna de los países desarrollados es muy importante para la mejora de los procesos, para las mediciones y la automatización, y para el control de calidad.
El uso de las radiaciones se aplica en un amplio campo de actividades, ya sea en el control de calidad de las materias primas de procesos industriales (cementeras, centrales térmicas, refinerías petrolíferas, etc.), o en el control de calidad de productos fabricados en serie, como requisito previo para la completa automatización de las líneas de producción de alta velocidad.
La irradiación con fuentes intensas es considerada como una operación para mejorar la calidad de determinados productos (plásticos especiales, esterilización de productos de “usar y tirar”, etc.).
Además, también se realizan experimentos con trazadores para obtener una información exacta y detallada del estado de los equipos industriales para optar a la prolongación de su vida útil.
Las fuentes de uso industrial no suelen producir residuos radiactivos en el país que las utiliza, porque, una vez inservibles, la firma comercial del país proveedor las retira cuando procede a su reposición.

 USO DE LOS RADIOISÓTOPOS COMO TRAZADORES

El hecho de que pequeñas cantidades de sustancias radiactivas puedan medirse rápidamente y con precisión, hace que los radioisótopos se utilicen para seguir procesos o analizar las características de dichos procesos. Estas sustancias se denominan trazadores.
Los trazadores se emplean para la investigación de procesos, pudiendo controlar los parámetros de los sistemas de ventilación (caudales, eficacia de ventilación), para las mezclas, comprobando el grado de homogeneidad, el tiempo de mezcla y el rendimiento del mezclador, para procesos de mantenimiento, estudiando el transporte de materiales por tuberías (fugas o escapes y flujos), y para sistemas de detección de desgaste y corrosión, determinando el grado de desgaste de materiales (motores) y la corrosión de equipos procesadores.

 CONTROL DE CALIDAD POR GAMMAFRÍA

La radiografía gamma constituye una técnica de control de calidad indispensable para la verificación de soldaduras en tuberías y para la detección de grietas en piezas de aviones.
Es la aplicación más importante de las fuentes de iridio-192, que por sí solas llegan a cubrir el 95% de los ensayos no destructivos que se realizan en el control de calidad de productos de fundición, soldaduras de construcciones metálicas, etc. El resto de estos controles se realiza con fuentes de cobalto-60 (para grandes espesores, hasta decenas de centímetros de acero) o con tulio-170 (para pequeños espesores, del orden de milímetros).

EMPLEO DE RADIACIONES EN OTROS PROCESOS INDUSTRIALES 

 La radiación gamma ioniza la materia y crea radicales libres, que son las especies intermediarias de muchas reacciones químicas. Aplicada la radiación (fuentes de cobalto-60) a los monómeros con los que se fabrican los plásticos se induce la formación de grandes cadenas poliméricas, y si se continúa la irradiación del material, se forman plásticos especiales de alto grado de entrecruzamiento catenario, que mejora considerablemente sus propiedades como aislante térmico y eléctrico. Así, la degradación de algunos polímeros inducida por radiaciones, constituye una útil propiedad para ciertos tipos de embalajes.
La producción de alambre y cables aislados con cloruro de polivinilo degradado con radiaciones gamma, da lugar a un aumento de la resistencia a las agresiones térmicas y químicas.
Otro producto importante es la espuma de polietileno degradado con radiaciones, empleada en aislamientos térmicos, acolchados contra impactos, chalecos de flotación y compuestos de madera y plástico solidificados con radiación gamma.

Aplicaciones de la energia nuclear

Aunque la energía nuclear se utiliza principalmente para la producción de energía eléctrica en las centrales nucleares ésta no es la única utilidad de la energía nuclear.
Este tipo de energía aparece en muchos otros aspectos de nuestra vida quotidiana y en el campo científico.
La energía nuclear tiene otras aplicaciones en diversos campos:
  • Aplicaciones industriales: con fines de análisis y control de procesos.
  • Aplicaciones médicas: en diagnóstico y terapia de enfermedades.
  • Aplicaciones agroalimentarias: en la producción de nuevas especies, tratamientos de conservación de los alimentos, lucha contra las plagas de insectos y preparación de vacunas.
  • Aplicaciones medioambientales: en la determinación de cantidades significativas de sustancias contaminantes en el entorno natural.
  • Otras aplicaciones: como la datación, que emplea las propiedades de fijación del carbono-14 a los huesos, maderas o residuos orgánicos, determinando su edad cronológica, y los usos en Geofísica y Geoquímica, que aprovechan la existencia de materiales radiactivos naturales para la fijación de las fechas de los depósitos de rocas, carbón o petróleo.
Aspectos de la energía nuclear que desarrollamos más extensamente en los siguientes apartados.